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Chaotic motion around prolate deformed bodies
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The motion of particles in the field of forces associated to an axially symmetric attraction center modeled by
a monopolar term plus a prolate quadrupole deformations is studied using Pdnctaee of sections and
Lyapunov characteristic numbers. We find chaotic motion for certain values of the parameters, and that the
instability of the orbits increases when the quadrupole parameter increases. A general relativistic analog is
briefly discussed.
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Attraction forces represented by a monopolar plus a prosymmetrically, az=—a andz= +a. The gravitational po-
late quadrupolar distribution of mass@harges are a good tential of the above mass configuration up to the oafeis
approximation for elongated massiveharged bodies. Ex-  Eq. (3) with g=2«a?. We shall usew=1 without loss of
amples range from astrophysics to nuclear physics. There agnerality. Note that we are not considering external multi-
many observed galaxy clusters with a cigarlike shipe polar moments \p=0), i.e., only deformed cores will be
Also, the nuclear charge of light gold atoms has been reg;,gied.
ported as having a large prolate deformafigh Most of the We can distinguish two cases depending on the sigp of
dwarf galaxies in the virgo cluster may obey the “prolate g firqt s the oblate deformation cases0. This is the

hypothesis,” i.e., they probably have a prolate S‘phemid""l:ommon case for bodies deformed by rotation and has been

shape[3]. Asterc_)ids also.have a prolate shape, but ysua"yanalyzed in astronomy for more than 200 years. The integra-
they are not axisymmetric. Merijtt] found, from detailed bility of the Newton equations for a particle moving in the

Lnodellnlg of triaxial %alax'?ti’ that rln(t)st of tgle tgaIaX|es rnUStgravitational field of an axially symmetric oblate body is an
€ hearly axisymmetric, eliner pro'ate or ovlate. unsolved problem. It is known as the classical problem of the

Classical, as well as quantum chaos have been studied liyonce of the third isolating integral of motig®]. There
a variety of axially symmetric fields of forces. In particular, e numerical evidences that orbits of particles moving

attraction centers described by potentials that are the sum A ound a monopole plus an oblate quadrupole are not cha-

two terms: a monopolar term and a quadrupolar deformationOtiC The second case is the prolate deformation ags@);

'I:_l:)rtr:_ermofre, this éehnter ;; perturbteccjj bby_tan etxternlal d'ls'that is the one that we shall discuss in this Rapid Communi-
ribution of massetchargesrepresented by Its external mul- ca40n |n this case we have a monopolar fiélde usual

tipolar moments, i.e., Kepler problem “perturbed” by a quadrupolar term, in

__ _ 24 other words, we have a typical situation wherein the
V=" alR=aPs(cosd)/R™+ Ve, @) Kolmogorov-Arnold-Moser(KAM ) theory applieg7].
Vp=Q;RP,(cosd)+ Q,R2P,(cosd) + - - - ) First we study the contours of the effective potential

Uere=U+h2/(2r?), whereh,=r2p is the axial specific an-
Sometimes the monopolar term is changed by the potentigular momentum that due to the axial symmetry is con-
of a spring[5]. In general, in all these cases the terms thatserved. We also have the conservation of the total specific
originate the chaos are the external multipolar moments. energy, E=(r2+2%)/2+Uqs;. Thus, we have that the mo-

We shall consider the simplest, albeit, important case of gjon is completely determined by the functions r(t) and

particle moving in the field of a monopole plus a quadrupolez=z(t). Then, we have a four-dimensional phase space. But,
deformation. This deformation is usually considered to bejye to energy conservation the motion actually takes place in
the major deviation from spherical symmetry. In cylindrical 3 three-dimensional space. An adequate tool to investigate

coordinates, I(, ¢,2), the field takes the generic form the trajectories in this phase space is the Poinsartace of
. section method. Now let us come back to the effective po-
U(r.z)=— @ q(2z°—r9) 3) tential contours. In Fig. 1 we plot the level contoursibfi;
’ Jr2+ 22 2(r2+22)52' for L,=0.83 andE=0.464 and different values of the quad-

rupole moment parametefa) q=0.3, (b) g=0.5, (c) q
wherea is a constant that may be associated with the centraf 0.85, andd) q=0.95. Thus, for these values of the param-
body masgcharge. It is instructive to have a special model €ters the motion of the particle is confined to toroidal regions

in mind; consider two equal masses located on zhaxis ~ that do not contain the symmetry axis. Note that for the last
case we have two nonconnected regions.

The particles move in the reduced phase spape (

*Email address: gueron@ime.unicamp.br =r,r,2). Note thatp,=z is determined by the energy con-
"Email address: letelier@ime.unicamp.br servation. In Fig. 2, for cas@), we present the intersection
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FIG. 1. We plot the level contours &f ¢ for L,=0.83 andE FIG. 3. Surface of section fok,=0.83 andE=0.464 andq
=0.464 and different values of the quadrupole moment parameter=0.5. The section corresponds to the plare0. For these values
(@ q=0.3,(b) g=0.5, (c) q=0.85, and(d) q=0.95. of the parameters we have the typical section indicating chaotic
motion.
points of some patrticle trajectories with the plarve0. The
picture is the one for regular orbits. Cad® is analyzed in .| 1og(dl 6p)
. . ) ' . N= lim | ——|, 4)
Fig. 3, using the same surface section. We find regions of 5o—0 t
nondestroyed tori together with chaotic regions in concor- t—soo

dance with the KAM theory. In Fig. 4 we show again case

(b) but, now with a different sectiorz=0.4. We see that the \yhere §, and & are the deviation of two nearby orbits at
integrable and chaotic regions are deformed depending ofimes 0 and respectively. We get the largestby using the

the chosen section. We also studied césethat is quite  technique suggested by Benettin et[8]

similar to the former, so we shall not present it here. We find e fix the value of the constants of motion las=0.83

that increasing the quadrupole moment the size of the chaotignd E=0.464, and choose the same values of quadrupole
regions also increases. And finally, in Fig. 5 we study orbitsyarameters used to plot the Poincaeetions. For the value

in one of the nonconnected regions of cade In this last  4—0.3 it was chosen the reference orbit with initial condi-
case the surface section is takenzas0.4, again we find {jons: z=0, p,=0, andr=0.85, ands,~10"?, we found

large regions of chaotic behavior and some nondestroyed/<10-4 that characterizes a stable system. Wjth0.5 and
tori. In summary, we find chaotic behavior of orbits for sev-jpjitial conditions: z=0, p,=0.2. Finally, forq=0.95, and
eral values pf prolate quadrupole moment. . z=0.4, p,=0.05 and r=0.95 we obtain A’=0.09
To quantify the degree of instability of the orbits we shall (+ 015). We see that the degree of instability increases
study their associated Lyapunov characteristic numh&fs ( \hen the quadrupole parameter increases for fixed constants

that are defined as the double limit of motion.
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FIG. 2. Surface of section fok,=0.83 andE=0.464 andq FIG. 4. Surface of section for the same values of the parameters
=0.3. The section corresponds to the plarse0. For these values that in the precedent figure, but a different section0.4. We see
of the parameters we have the section of regular motion. a different cut of the regular and chaotic regions.
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FIG. 7. Surface of section for region Il shown in the previous
figure. We have a large region of chaotic motion. The section cor-
responds to the plane=0, i.e.,z=0.

FIG. 5. Surface of section fok,=0.83 andE=0.464 andq
=0.95. The section corresponds to the plareé).4. Again we have
irregular motion.

As we said before, there are numerical evidences that or- A solution to the Einstein equations that has as a Newton-
bits of particles moving around a monopole plus an oblatdan limit a potential such as Eq3) is the Erez-Rosen-
quadrupole are not chaotic. The difference between the of2uevedo(ERQ) solution[10]. We did not find chaos in the
late and the prolate case can be understood by analyzing tig®late case, but the prolate case is chaotic. The confinement
critical points of the effective potentidl.;. In particular, ~ region for the relativistic motion constants=0.937, and
the existence of the saddle points is one of the main ingrebz=3.322, and the quadrupole parametgr5.02 is pre-
dients of instable motion. We find that the critical point, Sented in Fig. 6. The coordinates used in this case are sphe-

_ /—2_(3q+2L )2a, z=0, is a saddle point if the parameters roidal coordinates, which are the ones appropriate for the
obey the twi) cor;dition,s|,2<3q and 42> \2a/3. There- ERQ solution. They are related to the usual cylindrical
z z "

. coordinates by u=(R,+R.)/(2m), and v=(R.
fore, whenq<O0, the oblate case, no rela) can obey the first . N 2113
of these condition. R_)/(2m), with R.=[r“+(z=m)~]~“ We have two re-

The Newtonian motion of a particle moving in potential gions of confinements that we have labeled Il and Ill. In Fig.

(3) has a general relativistic analoge. The potential is re—7 we present a Poincasection for paf“c'es mgvmg in the
egion I, the section is taken as=0, i.e.,z=0; u,p, are

placed by a metric solution to the vacuum Einstein equatio'ianonical coniuoate variables. We see a phase space with a
and the particle motion equation by the geodesic equatior]. Jug ' P P

The instability of geodesics in metrics associated to a blackf'9€ region of chaotic motion. We shall present a complete

hole surrounded by a shell of matter was studied in som(§tUdy of geodesic in E.RQ spacetimes elsewhere.
detail in Ref.[9], Some dense cores in dark clouds have been found to have

prolate spheroidal shap&2]. Then a prolate geometry has to
be considered as initial condition in the star formation pro-
cess. We think that the strong instability presented here may
play a crucial effect in the formation of structures in starts
[11].
05 1 We want to finish this short communication by reminding
I one that in nonlinear systems of equations chaos is the rule
rather than the exception. Thus, simple systems with a mini-
> 0f >® 1 mum of structure play an important role in the physical, as
well as, mathematical understanding of chaos. A good ex-
I ample is the paradigmatic HemdHeiles system wherein the
“simple” addition of a x?y term in the potential of two
uncoupled oscillatorgintegrable motiop has dramatic con-
sequences that are the physical manifestation of the creation
of a saddle point together with a perturbation. In the case
-1 . : ' : presented here, we have a similar situation, the prolate-

1 T T T

u quadrupole potential also adds a saddle and a perturbation.
FIG. 6. Level contour for the general relativistic quadrupsle ] ]
monopole systendERQ solution. The relativistic constants ate, The authors thank CNPq and FAPESP for financial sup-
=3.32 andE=0.937 andyj=5.02. The labelsi andv denote sphe- port and M.A.M. AguiarIFGW-UNICAMP) for several dis-
roidal coordinates. cussions concerning chaos.
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